VOLTAGE CONTROLLED OSCILLATOR (VCO)

RANGE (octave)

SYNC (reset phase)

Pulse Width Modulation

I volt / Octave Freq Inputs

FREQUENCY (fine tuning)

Linear FM (Frequency Modulation)

Pulse Width (Affects Pulse Out Only)

Exponential FM Amount

OUTPUTS

use Q161 Osc Mixer to combine waveforms!

VOLTAGE CONTROLLED FILTER

(transistor ladder / low pass)

Initial Cutoff Frequency

Cutoff Frequency Modulation

AUDIO INPUTS

Slope (filter response)

Resonance

Each AUDIO INPUT has level control (can act as a mixer)

AUDIO OUTPUT

VOLTAGE CONTROLLED FILTER (STATE VARIABLE)

Cutoff Frequency
Modulation
Inputs &
Level (Depth)

Resonance Modulation Input & Level

AUDIO INPUT

Initial
Cutoff
Frequency

Initial Resonance

INPUT LEVEL

FILTER OUTPUTS

Voltage Controller Amplifier

response

Exponential is better for fast, percussive rise times, Linear is smoother/slower

Control Input I Attenuator

Control Input I

Output Signal Inverted

initial gain

Control Input 2 (no attenuator!)

Signal Inputs (summed together)

Output Signal

Works with DC and AC!

ADSR Envelope Generator

5v at gate input begins 4 stage envelope.

- I. Rise to 5v over attack time
- 2. Fall to sustain level over decay time
- 3. Hold at sustain level until gate drops to 0v
- 4. Fall to 0v over release time

Attack, Decay and Release are times Sustain is a level

Envelope Out

Manual Trigger

Gate Input

Slew Limiter

Slew Time

Direction

on/off gate input

input

a.k.a. glide, portamento, lag processor glissando

output

Sequencer (Right Side)

Step Voltages

Glide Amount

Add to final voltage (transpose)

Main Out

Gate Out

End of Sequence Gate

Gate and Step Outputs (for parallel 3x8 mode)

SEQUENCER (left side)

Voltage Range

One Shot / Loop

Mode: I sequence of 24 steps or 3 parallel sequences of 8 steps

Direction

External Clock

Internal Clock Rate

Gate Width

Press Set End to choose the last step of the pattern

Transport Controls, with Gate Inputs for external control

Ring Modulator

Multiply X by Y

Sample and Hold

take "samples" at every clock tick, and hold the voltage until next clock

use noise source as input and connect to VCO CV input for R2D2 sounds

Pan / Fade

In Pan mode, the control input controls which output input I is routed to.

In Fade mode, the control input controls which input is routed to output 1.

suggested use:

Use LFO sine wave as a control source for panning or cross-fading between different sources.

Mixer

Noise Source

MIDI Interface

Iv/octave out

velocity out

mode outputs

gate mode

MIDI in

tranpose in

gate out note-in = HIGH note-off = LOW

mode 2 adds ch 2 note, velocity, & gate

mode 3 adds CC support

note priority

Instrument Interface

(& envelope follower)

Threshold for Gate/Trigger

Amplified Signal Out

Gain

In

Envelope Out

Gate and Trigger Out